
Version N° 1.1

LaurTecLaurTec

LTlib 5LTlib 5

User ManualUser Manual

Author : Mauro Laurenti

Copyright © 2023 Mauro Laurenti 1/22

License

The Documentation is provided in an “As Is” condition. No warranties, whether
expressed, implied or statutory, including but not limited to, implied warranties of
mechantability and fitness for a particular purpose apply to this material.

The Author shall not, in any circumstances, be liable for special, incidental or
consequential damages, for any reason whatsoever.

Copyright (C) - Mauro Laurenti

All trademarks are the property of their respective owners

Copyright © 2023 Mauro Laurenti 2/22

LaurTecLaurTec LTlib 5 - User Manual

Index
Introduction...4
The path from LTlib 4 to LTlib 5..4
Software versions Free, Maker and PRO..5
LTlib file organization..6
LTlib.h file..7
LTlib configuration files..8
Create a new project..9
Change a project from one architecture to another...12
Use a different configuration file...13
Add a new device to the library..15
Use MCC with LTlib...19
Bibliography...21
History...22

 3/22

LaurTecLaurTec LTlib 5 - User Manual

Introduction
LTlib library makes programming with the MCUs easier than before. It integrates both

MCU peripheral libraries as well as external IC libraries. This makes implementing an
application as easy as connecting building blocks. The IC libraries span from IO
extenders, LCD drivers, memories, data converters and sensors. LTlib is independent
from Microchip peripheral libraries as well from the standard libraries that may come with
the compilers. As it is now, the library supports PIC microcontrollers from the following
architectures:

• PIC with 8 bit architecture.
• PIC with 16bit architecture.
• PIC with 32 bit architecture.

The path from LTlib 4 to LTlib 5
LTlib 4 was first introduced in February 2016. The main goal was to make the previous

PIC18 library independent from the Microchip Peripheral library. This was done by
introducing the module_xxxx libraries to cover and support the internal peripherals.
Furthermore the IC libraries got integrated with the peripheral libraries, making the IC
initialization easier. Indeed, by each IC initialization it was possible to initialize the MCU
as well. Each supported MCU got a configuration file, out of which it was possible to
provide, beside the MCU configuration, also the MCU characteristics used by the LTlib
library.

LTlib 5, inherited all that features, further extending it. The library architecture around
LTlib 4 made easy extending it to other MCUs, by keeping the same configuration file
and basic code. All the IC libraries got supported by extending the module_xxxx files.
The configuration files have been reorganized to make their customization easier. This
allow adding new MCUs with less effort.
As code clean up, to support easy of use, by LTlib 5, all the C18 code compatibility has
been removed, supporting XC compilers only. Each code and example has been re-
compiled supporting XC compilers from version 2.x, thus supporting C99 standard by
default. This was needed since LTlib 4 was developed for compiler versions smaller than
2.x.
To improve the code standards, all the code support now data format according to ANSI
standard, such as uint16_t instead of simple int. This allows keeping a known variable size
by changing MCU architecture. Indeed by moving codes by 8, 16 and 32 bits MCU
architectures, subtle bugs may occur if that precaution would not have been taken.
Those changes allow writing a code that may easily be compiled for 8, 16 and 32 bits
MCUs.

 4/22

LaurTecLaurTec LTlib 5 - User Manual

Software versions Free, Maker and PRO
The activities made by LaurTec, among which LTlib, always have the main goal to

support education applications for free, without charge. Thus the library, with minor
limitations is offered also for free. The library is offered in three different versions:

• Free
• Maker
• PRO

The Free version can be used without charges for non commercial applications, as
specified in details within the header file of each library. It includes 8 bits architecture
only.

The Maker version offers some additional libraries. As the free version is not intended for
commercial applications. That version can be requested with a simple donation. No
minimum donation is needed, just offer the coffee you want let me drink to remain awake
while coding. The maker version is intended to support further development of the
library and payback the working hours behind it. Professors may request for free the
maker version and offer the same rights to the students that will attend the class. So for
the students there would be no need to spend any money to get the libraries used during
the class. They can bring their maker version at home and keep programming. The Maker
version includes 8 bits architecture only.

PRO version, it is based on the maker version but may have additional libraries. Major
difference is that it can be used for commercial purposes and you would have direct
support. PRO version is for sale and you would need to request a quote for it. 8,16 and 32
bits architecture can be requested separately.

 5/22

LaurTecLaurTec LTlib 5 - User Manual

LTlib file organization
LTlib does not need any installation, you just need to download it and copy the folder

within your preferred working path. The library name is LTlib_v_5.x.x where the x.x
denotes the subversion. This allows using multiple versions of the library without
overwriting older ones. Each project can be linked with a specific version of the library.
The folder is organized as shown in Figure 1.

The content in each folder is as follow:

• conf
Configuration files related to each supported devices. Within that folder you can
find also the hardware files related to the boards developed by LaurTec. The
hardware files have definitions for LEDs, buttons or similar hardware, specific to a
board.

• doc
LTlib documentation. This includes the high level information and not the library
documentation. The library documentation can be found inside each header file.

• ex
Code examples. Each library has a folder with one or multiple examples that show
the basic library usage. Examples are offered for 8, 16 and 32 bits.

• inc
Include files for each library and LTlib.h. The header file represents the
documentation for each library. The format is compatible with Doxigen, thus it
could be extracted and navigated by extracting it in HTML format. The
documentation inside the doc folder does not provide the extracted
documentation from the header files.

• sch
It contains simple schematic to properly use a specific library. Referring to the
datasheet is always recommended, since a proper schematic may differ by each
application.

• src
It contains the source code of each library.

 6/22

Figure 1: LTlib organization.

LaurTecLaurTec LTlib 5 - User Manual

• src/modules_xxx
It contains the source code for the peripheral libraries. The available codes are
architecture depended, thus you have one folder per MCU architecture 8, 16 and
32 bits.

LTlib.h file
The configuration file LTlib.h , that can be found inside the inc directory, is a key part

of the LTlib library. LTlib.h file must be included inside each project. The file contains
the main settings that are related to the MCU, such as the clock frequency, compiler
settings and supported devices. Below there is a simple code cut out from the file:

//***
// COMPILER AND MCU INFO
//***

#if defined (_XC_H_) || defined (__XC_H)
 #define COMPILER_XC
#endif

#ifdef __XC8
 #define COMPILER_XC8
#endif

#if defined (__PIC32C) || defined (__PIC32M)
 #define COMPILER_XC32
#endif

#ifdef COMPILER_XC
 #include <xc.h>
#endif

//***
// LIBRARY TYPE DEFINITIONS
//***

#include "LTlib_types.h"

//***
// SYSTEM & MODULE CLOCKS
//***

#ifndef SYSTEM_CLOCK
 #define SYSTEM_CLOCK 20000000
#endif

#ifndef I2C_CLOCK
 #define I2C_CLOCK SYSTEM_CLOCK
#endif

#ifndef UART_CLOCK
 #define UART_CLOCK SYSTEM_CLOCK
#endif

#ifndef SPI_CLOCK

 7/22

LaurTecLaurTec LTlib 5 - User Manual

 #define SPI_CLOCK SYSTEM_CLOCK
#endif

It is possible to see that also the compiler is cheeked here. This allows to properly
initialize the LTlib library.

Many parameters inside the LTlib library support being changed without the need of
changing the file.
LTlib.h already offers that feature as other IC libraries. Each parameter that can be
changed is typically wrapped as follow:

#ifndef UART_CLOCK
 #define UART_CLOCK SYSTEM_CLOCK
#endif

In this way if there is no previous definition of the parameter, the default one is used. To
set the UART_CLOCK to a different value it is required to define it before the LTlib file
is called the first time.

LTlib configuration files
The other key configuration files are the ones related to each supported device, these can
be found within the conf directory. Each device that is supported has a configuration file.
The configuration file is automatically loaded by LTlib.h depending on the device that
gets selected once a new project is created, via MPLAB X IDE. There is indeed no need
to specify to the library the used device, since that information gets automatically
retrieved by the project information, upon its creation or once the device gets changed.

Each device configuration file is made of three parts:

• LTlib configurations
It contains the list of supported peripheral modules. In this way, if a specific
module library is used, it can check if the module is supported.

• Module Settings
It contains all the module information. Such as number of IO, ADC channels,
number of UARTS and so on. For each module, there is also the count for it and
the pin location in case specific pins may need to get properly initialized.

• MCU configurations
These are the standard MCU configuration required by the compiler and the
selected MCU. It is a list of #pragma config associated with each configuration.
The configuration related to each MCU is provided within the XC compiler
documentation.

 8/22

LaurTecLaurTec LTlib 5 - User Manual

Create a new project
Using LTlib is quite easy. Since no installation is required, the only thing which is

needed is to update the IDE include paths.

The first thing to be done is to create a new project. If you have already a new one and
you want to start using LTlib, works fine as well.

Afterward, you need to update the project proprieties. Just select your project in the
navigation pane, and right click on it, then select Proprieties. If you are working with
MPLAB X and XC8 you will get the window as the one in Figure 4.

Among the global options on the left side, select XC8 Compiler, while on the right side
update the include directories field. You can than add the following paths:

• conf
• inc
• src
• src\modules_PIC_8_bits

the include paths show that the module source code is architecture dependent, thus
beside the src path, it is required to add the specific folder containing the module
libraries for the specific architecture that is used.

LTlib 5, is compiled with the warning level 0 rather than -3, thus it is recommended to

 9/22

Figure 2: Project Proprieties window - XC8.

LaurTecLaurTec LTlib 5 - User Manual

change it to 0. Keeping the level as -3, may show some additional Messages and Warnings
depending on the library that is used.

If the project is based on the MPLAX IDE and the compiler XC16, the steps are the
same, but the Project Proprieties window is slightly different, as shown in Figure 3.

In this case to set the paths, you need to select the XC16 (Global Options) on the left side
and the Common include dirs field on the right side. You can than add the following paths:

• conf
• inc
• src
• src\modules_PIC_16_bits

This time as well, the module libraries path is architecture dependent.

 10/22

Figure 3: Project Proprieties window - XC16.

LaurTecLaurTec LTlib 5 - User Manual

If the project is based on the MPLAX IDE and the compiler XC32, the steps are the
same, but the Project Proprieties window is slightly different, as shown in Figure 4.

In this case to set the path, you need to select the XC32 (Global Options) on the left side
and the Common include dirs field on the right side. You can than add the following paths:

• conf
• inc
• src
• src\modules_PIC_32_bits

This time as well, the module libraries path is architecture dependent.

 11/22

Figure 4: Project Proprieties window - XC32.

LaurTecLaurTec LTlib 5 - User Manual

Change a project from one architecture to another
As it has been shown during the creation of a new project, the only thing that change

between the architectures is that the module libraries path is changed. This is a key change
while switching the project from one MCU architecture to another. Nevertheless before
doing it, the following steps are required.

Select the Project Proprieties – configuration window and set the new MCU Device first,
Figure 5 shows the case of moving from PIC18 (XC8) to PIC24F (XC16). Once you have
selected the new MCU from the Device field, the Compiler Toochains window on the
bottom side, gets updated with the new available compilers. Select the one that apply to
your use case and press the Apply button.

Only after you apply the new MCU and compiler, the left side of the window is updated
with the new proprieties and settings for the new Tool chain. In particular, the left side,
after applying the new settings, will be updated as shown in Figure 6.

From that point, the included path are removed, thus you need to insert it again as it has
been shown on the previous paragraph.

At this point, you are ready to go, programming with the new architecture.

 12/22

Figure 5: Project Proprieties window – new MCU selection.

LaurTecLaurTec LTlib 5 - User Manual

Use a different configuration file
LTlib 5 comes with the configuration file for each device that is supported.

Configurations are made to be changed, thus the configuration file can be changed as
well. There are 4 major ways to do that with pro and cons, as shown below.

• Change directly the configuration file.
You can update directly the configuration file, but this means loosing the original
file content. Nevertheless is the quickest and easiest ways to do it. To get the
original file you can always download LTlib again.

• Copy and paste the configuration file of interest and rename it with your project
name or similar name. In this way you do not loose the original library file.
The new configuration file is not automatically loaded by the library. To properly
call the configuration file you need to change the LTlib.h file with your new file
name. For instance if you have created a new configuration file for the
PIC18F46K22 you can change the following section of the LTlib.h file:

 #ifdef _18F46K22
 #include "PIC18F46K22_config.h"
 #define CHIP_SUPPORTED
 #endif

the file name PIC18F46K22_config.h, must be updated with your new

 13/22

Figure 6: Project Proprieties window – after the new Toolchain.

LaurTecLaurTec LTlib 5 - User Manual

configuration file name. By each new project you will create with the PIC18F46K22
the new configuration file is loaded automatically.

• Another option for loading a new configuration without changing the LTlib.h file
would be to create two copies for the configuration file, so that you have the
original one plus the two copies, as shown below:

PIC18F46K22_config.h
PIC18F46K22_config_Copy_1.h
PIC18F46K22_config_Copy_2.h

you can then rename one of the copy as xxx_Original and the second one with
your project name. This second file is the one that you would change based on
your configuration needs.

PIC18F46K22_config.h
PIC18F46K22_config_Original.h
PIC18F46K22_config_Your_Project.h

By creating a new project, only the PIC18F46K22_config.h is loaded, thus you can
change the content of the PIC18F46K22_config.h by including the configuration
you want. For instance:

 #include "PIC18F46K22_config_Your_Project.h"

All the configuration information can be deleted, you just write the single code line
as before. Indeed the configuration file PIC18F46K22_config_Original.h has the
original settings and nothing has been lost.

With this change the new configuration file will be automatically loaded. If a new
configuration is needed you can add it by creating a third file and update the
#include option within the main configuration file.

• Last but not least, all the configuration files are within the conf directory. Copy
the configuration you need and add it within your project folder. Do not add the
conf path within the project paths, so that the configuration will be loaded from
the project root path and not from the conf directory. You can change the local
configuration file as you need, without the need of creating new files. The original
configuration files are preserved.

 14/22

LaurTecLaurTec LTlib 5 - User Manual

Add a new device to the library
LTlib 5 comes with the support of the MCUs that are typically used within the

LaurTec projects. This means that the library may not support directly the MCU you
need. This is in general not a big problem since many MCUs share similar module
architectures. If specific modules are not supported or different, you may need to update
the module libraries and it may get more complicated unless you are an experienced
programmer. In the following section I will cover only the case where you do not need to
update the module libraries. Nevertheless the following steps would apply to the second
case as well. So, you would need to follow first the following steps, and if you do not
need to change the module libraries you are ready to go, while if you need to change it,
you would do it after the updates shown below.

Let us analyze few easy Use Cases

Use Case A

The easiest use case is when you need to add the same device with another voltage
level. For instance you need the PIC18LF46K22 while the library supports the
PIC18F46K22 without L. In this case just copy and paste the configuration file
PIC18F46K22_config.h and rename it PIC18LF46K22_config.h , by adding the L. Open
the configuration file and update the definition Header from:

#ifndef PIC18F45K22_CONFIG_H
#define PIC18F45K22_CONFIG_H

 to:

#ifndef PIC18LF45K22_CONFIG_H

#define PIC18LF45K22_CONFIG_H

Afterward you would need to update the LTlib.h file, so that once you will create a new
project with the PIC18LF46K22, it would automatically load the new configuration file. If
you will forget that step, by selecting the PIC18LF46K22 and compiling the project, you
will get the error:

#error LTlib is not tested on the microcontroller you have selected

The new MCU must be added within the compiler group that can be found within the
LTlib.h file. Indeed each compiler has a list of MCUs that are supported.

For the PIC18LF46K22 you can search for the COMPILER_XC8 and add the following
line after any MCU of the group, as shown below.

 15/22

LaurTecLaurTec LTlib 5 - User Manual

#ifdef _18LF46K22
 #include "PIC18LF46K22_config.h"
 #define CHIP_SUPPORTED
 #endif

After that modification you can compile new projects with the new MCU.

Use Case B

Let’s assume we want now to add the PIC18F23K22. The new MCU is similar to the
PIC18F46K22 since it belongs to the same family but it has a different package. This will
reflect in having less IO, probably different number of ADC channels and sometime less
communication modules. With other MCUs packages you may have the other way
around, such as more pins and more ADC channels.

As case A, we can start by copy and paste the configuration file of the
PIC18F46K22_config.h, since it is the most similar MCU. We can then rename it
PIC18F23K22_config.h.

This time the configuration must be really checked and updated, since we have a different
package. The configuration file contains all the peripheral settings that are supported:

#define IO_LIBRARY_SUPPORTED
#define UART_LIBRARY_SUPPORTED
#define SPI_LIBRARY_SUPPORTED
#define I2C_LIBRARY_SUPPORTED
#define EEPROM_LIBRARY_SUPPORTED
#define ADC_LIBRARY_SUPPORTED
#define FLASH_LIBRARY_SUPPORTED

in this case they are the same, otherwise we should remove or eventually add it,
depending on the available modules. The right definition name to be added can be found
on similar MCU configuration files or by opening the module library of interest. Indeed
the definition name is checked within each module library file.

Afterward it is needed to go to each peripheral setting and double check it. In particular
the pin definitions may change.

For the IO section we would need to update it from the following code:

//**
// IO
//**
#define NUMBER_OF_IO_PORTS 5

#define PULL_UP_RESISTORS_AVAILABLE
#define PULL_UP_ENABLE_BIT INTCON2bits.RBPU
#define PULL_UP_SINGLE_BIT_ENABLE
#define PULL_UP_ENABLE_REGISTER_B WPUB

 16/22

LaurTecLaurTec LTlib 5 - User Manual

into:

//**
// IO
//**
#define NUMBER_OF_IO_PORTS 3

#define PULL_UP_RESISTORS_AVAILABLE
#define PULL_UP_ENABLE_BIT INTCON2bits.RBPU
#define PULL_UP_SINGLE_BIT_ENABLE
#define PULL_UP_ENABLE_REGISTER_B WPUB

If MCLR is used as IO, since it is mapped to PORT E, you need to keep 5 as port count
and not 3. Otherwise you will not be able to access PORTE via module_IO library.
Keeping 3 still make possible to access the port via direct access of the register PORTE,
thus without using the LTlib library. This possibility remains at any time, but mixing the
code too much may lead portability problems.

The communication modules require some care since the reduced IO pins may imply that
the pins are mapped differently. An example is the UART module 2 which is not on
PORT D but PORT B, thus the configuration must be updated. Reduced IO may also
imply that less communication modules may be available. LTlib XC8 supports, as it is
today, up to two modules per communication type so 2x UART, 2x SPI and 2x I2C. On
different architecture the supported communications channel may be different.

Once all the configurations are matched for the new device, it is important to double
check if the number of ports you have selected with NUMBER_OF_IO_PORTS, it is
supported by the library module_IO. You can do that by checking the module_IO.c file
of the architecture you are using. For the specific case, it is possible to see that there is the
block:

#if (NUMBER_OF_IO_PORTS == 3)

which contains all the initialization for the 3 ports use case; thus we are fine for the
PIC18F23K22 too.

Once all the configurations are updated, it is possible to update the LTlib file by adding:

#ifdef _18F23K22
 #include "PIC18LF46K22_config.h"
 #define CHIP_SUPPORTED

 #endif

 17/22

LaurTecLaurTec LTlib 5 - User Manual

Use Case C

A similar approach can be used for devices that are part of the same family but with a
different memory size. In that case, beside the updates shown before, you have to make
sure to update the following sessions as well, related to the Flash and EEPROM memory.

//**
// EEPROM
//**
#define EEPROM_AVAILABLE

#define EEPROM_MODULE_SIZE 0x3FF

//**
// FLASH
//**
#define FLASH_AVAILABLE

#define FLASH_ERASE_BLOCK 64
#define FLASH_WRITE_BLOCK 64

#define DEVICE_ID_ADDRESS 0x3FFFFE
#define DEVICE_ID_BYTES 0x02

#define DEVICE_REVISION_ADDRESS 0x3FFFFE
#define DEVICE_REVISION_BYTES 0x01

 18/22

LaurTecLaurTec LTlib 5 - User Manual

Use MCC with LTlib
If the device is not supported by LTlib, creating a new configuration file is an option. On
the other hand you may not want to use the configurations out of the LTlib files at all,
and use MCC or your configuration instead. This use case still let you benefit of the rest
of the LTlib libraries that support different external ICs.

LTlib supports the option of working together with MCC by simply declaring the
following line before LTlib.h gets included.

#define MCC_USED

#include <LTlib.h>

by doing that, LTlib will be set as follow:

• Use _XTAL_FREQ that is defined by MCC, thus the clock for the different
peripherals will use it.

• All the MCU configurations defined via #pragma , inside LTlib, are ignored. The
ones used by MCC will be used instead.

• Each library that automatically initializes the IC peripheral, will be ignored, thus
via MCC you have to make sure that you define the pins as the library will use it.

You can still change the LTlib used pin by modifying the standard configuration file that
gets loaded, MCC_default_config.h, nevertheless the MCC I/O settings and the
configuration file must match.

If you use MCC you still get the following warnings from the LTlib library:

#warning (LTlib) LTlib is not tested on the microcontroller you have
selected
#warning (LTlib) LTlib has loaded the MCC default config file.

 19/22

LaurTecLaurTec LTlib 5 - User Manual

Index
 1
 16bit architecture...4
 3
 32 bit architecture...4
 8
 8 bit architecture..4
 A
 ANSI...4
 C
 C99...4
 CHIP_SUPPORTED..16
 Common include dirs...12
 Compiler Toochains...12
 COMPILER_XC8..15
 conf..6, 9 e segg.
 D
 doc...6
 Doxigen..6
 E
 ex..6
 F
 Free version..5
 G
 Global Options...12
 H
 HTML...6
 I
 I2C...17
 IDE include paths...9
 inc...6, 9 e segg.
 L
 LCD...4
 LTlib.h..7
 M
 Maker version..5
 MCC..19

 MCLR...17
 module_IO.c..17
 module_xxxx..4
 N
 NUMBER_OF_IO_PORTS................................17
 P
 PORTE...17
 PRO...5
 PRO version..5
 Project Proprieties..12
 R
 RBPU..17
 S
 sch..6
 SPI...17
 src..9 e segg.
 src/modules_xxx...7
 src\modules_PIC_16_bits....................................10
 src\modules_PIC_32_bits....................................11
 src\modules_PIC_8_bits...9
 T
 Tool chain..12
 U
 UART..17
 UART_CLOCK..8
 W
 WPUB...16
 X
 XC compilers...4
 XC16...10
 XC32..10 e seg.
 XC8...9
 XC8 Compiler..9
 _
 _XTAL_FREQ...19
 #
 #pragma config...8

 20/22

LaurTecLaurTec LTlib 5 - User Manual

Bibliography

[1] www. LaurTec.it : official site where you can download the LTlib software upgrades.

 21/22

http://www.LaurTec.it/
http://www.LaurTec.it/

LaurTecLaurTec LTlib 5 - User Manual

History

Date Version Author Description

6. August 2023 1.1 Mauro Laurenti • Updated GUI screenshot to MPLAB X 6.10.
• Added: Use MCC with LTlib.

7. March. 2020 1.0 Mauro Laurenti Original version.

 22/22

